Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform
نویسندگان
چکیده
There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space.
منابع مشابه
Passive and semi-active heave compensator: Project design methodology and control strategies
Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave co...
متن کاملDesign and Simulation Study on a Virtual Prototype of an Active Heave Compensation System for Deep-ocean Mining
Characteristics of heave compensation systems used on a marine drilling platform or drill-ship are analyzed. An active heave compensation system with two lift cylinders is proposed by COMRA (China Ocean Mineral Resources & Association), which will be used in 1000-m depth ocean poly-metallic nodule pilot mining system. A corresponding virtual prototype of this system is developed. The parametric...
متن کاملHigh Performance Control of an Active Heave Compensation System
To compensate for heave motion, which has an adverse impact on the response of a drill-string or a riser, passive and active devices are usually used. Active heave compensators, whose control system is an essential part, allow conducting operations under more extreme weather conditions than passive ones. This paper presents a constructive method to design a nonlinear controller for an active he...
متن کاملInvestigation of influential factors on well temperature for gas-liquid two-phase flow in under-balanced drilling operation
Analysis of the drilling fluid temperature due to heat transfer of drilling fluid with the formation in under-balanced drilling operation is the main objective of this study. Gas-liquid two-phase flow model considering thermal interaction with the formation is used to numerically simulate a well with real dimensions. In the present study, the continuity, momentum, and energy equations are devel...
متن کاملImprovement of the heave motion of a semi-submersible platform with damping sheets subjected to sea waves
In this study, the damping sheets were attached to a semi-submersible platform to mitigate the heave motions. We first examined a typical GVA4000 semi-sub under a monochromatic linear wave train in deep water. an analytical method based on diffraction theory was used to determine the heave motion response. The results revealed that the analytical results show good agreement with available exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015